WELCOME & INTRODUCTIONS

William D. Chey, MD
Housekeeping

- There will be a Q&A session at the end of the program; if you would like to pose a question to the faculty, please write it on one of the cards on your table
- Please silence your cell phones and pagers

Agenda

Incidence and Impact of IBS (subtypes) and CC
William D. Chey (Chair)

Managing IBS-D: Evidence-Based Strategies for Diagnosis and Treatment
Darren M. Brenner

The Diagnostic Dilemma of IBS-C and CC
Brian Lacy

Nuanced Treatment of IBS-C and CC
Amy E. Foxx-Orenstein

Shared Decision Making to Improve Care
All Faculty
Faculty

William D. Chey, MD (Chair)
Professor of Medicine
Director, GI Physiology Laboratory
Co-director, Michigan Bowel Control Program
University of Michigan Health System
Ann Arbor, MI

Darren M. Brenner, MD
Assistant Professor of Medicine and Surgery
Northwestern University Feinberg School of Medicine
Chicago, IL

Amy E. Foxx-Orenstein, DO, FACP, FACP
Associate Professor of Medicine
Director of Motility
Director of Constipation and Pelvic Floor Clinic
College of Medicine Mayo Clinic Consultant
Division of Gastroenterology
Department of Internal Medicine
Mayo Clinic
Scottsdale, AZ

Brian E. Lacy, MD, PhD
Professor of Medicine
Division of Gastroenterology and Hepatology
Dartmouth-Hitchcock Medical Center
Lebanon, NH

Disclosures

William D. Chey, MD (Chair)
Retained Consultant: AstraZeneca Pharmaceuticals LP; Forest Laboratories, Inc; GlaxoSmithKline; Ironwood Pharmaceuticals; Prometheus Laboratories Inc.; Perrigo Company; Purdue Pharma; Salix Pharmaceuticals, Inc.; Sandhill Scientific; Takeda Pharmaceutical Company Limited

Darren M. Brenner, MD
Advisory Board: Perrigo Company; Salix Pharmaceuticals, Inc.
Speakers Bureau: Forest Laboratories, Inc.; Ironwood Pharmaceuticals; Salix Pharmaceuticals, Inc.

Amy E. Foxx-Orenstein, DO, FACP, FACP
Retained Consultant: Forest Laboratories, Inc.; Ironwood Pharmaceuticals
Speakers Bureau: Salix Pharmaceuticals, Inc.

Brian Lacy, MD, PhD
Retained Consultant: Ironwood Pharmaceuticals; Takeda Pharmaceutical Company Limited

Paradigm Medical Communications, LLC staff members: *no financial conflicts to disclose.*
Independent peer-reviewer of this activity: *no financial conflicts to disclose.*
Commercial Support

This CME initiative is supported by an educational grant from *Forest Research Institute*, a subsidiary of Forest Laboratories, Inc., and *Ironwood Pharmaceuticals*.

Continuing Medical Education (CME) Information

Educational Objectives

Upon proper completion of this activity, participants should be better able to:

- Describe current evidence-based approaches to accurately characterize IBS (subtypes) and CC in order to differentiate them from other medical conditions that present with similar symptoms.
- Formulate individualized treatment plans for patients with IBS (subtypes) and CC based on unique patient characteristics and understanding of current clinical evidence.
- Describe strategies for improving communication and increasing a coordinated approach for care of patients with IBS (subtypes) and CC among a multidisciplinary team of physicians and allied healthcare professionals.
Using the Audience Response Pads

• Each question will be displayed on a slide with an ORANGE title.
• To enter a response, press the button representing your choice when the countdown timer appears.
• You will have 6 seconds to enter a response.
• If you change your mind, just press the new button. The computer will only accept the last response.
• Following the countdown, a graph will appear displaying the distribution of responses.

INCIDENCE AND IMPACT OF IBS (SUBTYPES) AND CC

William D. Chey, MD
IBS (subtypes) & CC are Common

<table>
<thead>
<tr>
<th></th>
<th>IBS</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≈25-45 million people</td>
<td>≈63 million people</td>
</tr>
<tr>
<td></td>
<td>• 10%-15% of US population¹</td>
<td>• ≥20% of US population²</td>
</tr>
<tr>
<td>Demographics³,⁴</td>
<td>• All ages (most common <50 y)</td>
<td>Demographics</td>
</tr>
<tr>
<td></td>
<td>• Peak incidence early adult to 34 y</td>
<td>• Elderly (=40% ≥65 y)⁵</td>
</tr>
<tr>
<td></td>
<td>• Female > male</td>
<td>• Female > male⁶</td>
</tr>
<tr>
<td>Up to 3.5 million physician visits/y⁷</td>
<td>Up to 3.5 million physician visits/y⁷</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≈63 million people</td>
<td>≈2.5 million physician visits/y⁸</td>
</tr>
</tbody>
</table>

CC, chronic constipation; IBS, irritable bowel syndrome

IBS & CC are Costly

Direct Cost of IBS
- Annual cost per patient: $5049¹
- 50% higher costs vs matched controls²

Indirect Cost of IBS¹
- Absenteeism
- Impaired productivity

Direct Cost of CC
- Annual cost per patient: $7522¹
- >2x cost of controls over 15-y period²

Indirect Cost of CC³-⁵
- Compared with matched controls, those with CC report
 - Significantly reduced HRQoL and work productivity
 - Significantly greater use of healthcare resources (office and ED visits, hospitalizations)
 - More missed workdays

ED, emergency department; HRQoL, health-related quality of life

The Patient-Physician Encounter:
Patient Perspective

- Embarrassing symptoms
 - Significant interference with daily life
- Perceived lack of validation, empathy, and understanding of the nature of symptoms
 - Clinicians may underestimate symptom occurrence, severity, and impact on QoL
- Minimization/dismissal of symptoms
 - “Don’t worry, it’s nothing serious”
 - “It’s a nuisance, but it won’t kill you”
 - “You’ll have to learn to live with it”
 - “It’s all in your head”

The Patient-Physician Encounter:
Physician Perspective

- No reliable biomarker or universal pathophysiology
- Diverse symptoms (GI and non-GI) frequently complicated by psychosocial comorbidities
 - Difficult to quantify objectively
- Many organic conditions can masquerade as IBS or CC
- Treatments offer marginal therapeutic gain and can cause potential harms

GI, gastrointestinal
Key Takeaways

• IBS and CC are
 – Common
 – Costly
 – Significant

• IBS and CC have overlapping symptoms that can cause challenges for patients and providers

• A trusting patient-provider relationship and evidence-based management recommendations can improve outcomes

MANAGING IBS-D:
EVIDENCE-BASED STRATEGIES FOR DIAGNOSIS AND TREATMENT

Darren M. Brenner, MD
Rome III Diagnostic Criterion for IBS*

• Recurrent abdominal pain or discomfort† ≥3 d/mo in the last 3 mo associated with ≥2 of the following:
 – Improvement with defecation
 – Onset associated with a change in frequency of stool
 – Onset associated with a change in form (appearance) of stool

*Criterion fulfilled for ≥3 mo with symptom onset ≥6 mo prior to diagnosis
†Discomfort means an uncomfortable sensation not described as pain

Bristol Stool Form Scale

Type 1	Separate hard lumps, like nuts (hard to pass)
Type 2	Sausage-shaped but lumpy
Type 3	Like a sausage but with cracks on its surface
Type 4	Like a sausage or snake, smooth and soft
Type 5	Soft blobs with clear-cut edges (passed easily)
Type 6	Fluffy pieces with ragged edges, a mushy stool
Type 7	Watery, no solid pieces, entirely liquid

IBS-C, IBS with constipation; IBS-D, IBS with diarrhea; IBS-M, mixed IBS (also referred to as IBS-A [alternating])

© 2013 Paradigm Medical Communications, LLC, except where noted.
ARS Question 1

Which of the following conditions must be considered in the differential diagnosis of IBS-D?

A. Gluten sensitivity
B. Celiac disease
C. Fibromyalgia
D. A and B
E. B and C

Food for Thought...

• What is the diagnostic overlap between celiac disease and IBS-D?
• Who should be tested for comorbid celiac disease?
• What is the role of a gluten-free diet in IBS-D patients who do NOT have celiac disease?
• What is the role of antibiotics for the treatment of IBS-D?
Prevalence of Biopsy-Proven Celiac Disease in Patients with IBS-D

Pooled OR for Biopsy-Proven Celiac Disease in Patients Meeting Diagnostic Criteria for IBS vs Controls\(^1\)

<table>
<thead>
<tr>
<th>Study</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sanders DS et al. Lancet 2001;358(9292):1504-1508</td>
<td>7.29 (1.65, 66.52)</td>
</tr>
<tr>
<td>Sanders DS et al. Eur J Gastroenterol Hepatol. 2003;15(4):407-413.</td>
<td>4.49 (0.97, 17.03)</td>
</tr>
<tr>
<td>Shahbazkani B et al. Aliment Pharmacol Ther. 2003;18(2):231-235.</td>
<td>28.23 (1.90, 578.67)</td>
</tr>
<tr>
<td>Chey WD et al. Gastroenterol. 2007;132(suppl 1):A147.</td>
<td>1.52 (0.22, 16.93)</td>
</tr>
<tr>
<td>Ozdil K et al. Dig Dis Sci. 2008;53(7):1852-1855.</td>
<td>0.67 (0.00, 26.11)</td>
</tr>
<tr>
<td>Combined (random)</td>
<td>4.34 (1.78, 10.58)</td>
</tr>
</tbody>
</table>

CI, confidence interval; OR, odds ratio

Cost-Effectiveness of CS Testing vs Empiric Therapy for IBS-D

- CS testing costs additional $11,000 per additional symptom improvement compared to empiric therapy
- Incremental cost declines rapidly as baseline prevalence of underlying CS increases
 - Reaches $0.00 when CS prevalence is 8%

CS, celiac sprue

Irritable Bowel Syndrome and Chronic Constipation: Digesting Recent Advances and Current Thinking

ACG Recommendations on CS Testing in Patients with IBS-D

- "Routine serologic screening for [CS] should be pursued in patients with IBS-D and IBS-M (Grade 1B)"
- ACG lists IBS among conditions in which CS occurs more frequently than in the general population and/or for whom GFD may be beneficial

ACG, American College of Gastroenterology; GFD, gluten-free diet

Celiac Prevalence in IBS-D: Overestimated?

<table>
<thead>
<tr>
<th>Test</th>
<th>Suspected IBS (n=492) n (%)</th>
<th>Healthy Controls (n=458) n (%)</th>
<th>P Value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biopsy-proven celiac disease</td>
<td>2 (0.41)</td>
<td>2 (0.44)</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Any abnormal celiac disease test</td>
<td>36 (7.32)</td>
<td>22 (4.8)</td>
<td>.25</td>
<td>1.49 (0.76, 2.90)</td>
</tr>
<tr>
<td>AGA IgG</td>
<td>24 (4.88)</td>
<td>14 (3.06)</td>
<td>.70</td>
<td>1.19 (0.50, 2.79)</td>
</tr>
<tr>
<td>AGA IgA</td>
<td>8 (1.63)</td>
<td>8 (1.75)</td>
<td>.54</td>
<td>1.41 (0.47, 4.22)</td>
</tr>
<tr>
<td>EMA</td>
<td>3 (0.61)</td>
<td>2 (0.44)</td>
<td>.66</td>
<td>1.65 (0.17, 15.42)</td>
</tr>
<tr>
<td>TTG IgA</td>
<td>6 (1.22)</td>
<td>2 (0.44)</td>
<td>.15</td>
<td>3.87 (0.61, 24.74)</td>
</tr>
<tr>
<td>DQ2</td>
<td>164 (33.33)</td>
<td>180 (39.30)</td>
<td>.004</td>
<td>0.61 (0.44, 0.86)</td>
</tr>
<tr>
<td>DQ8</td>
<td>81 (16.46)</td>
<td>83 (18.12)</td>
<td>.54</td>
<td>1.14 (0.76, 1.70)</td>
</tr>
</tbody>
</table>

Gluten sensitivity may be more common than biopsy-proven CD compared to controls

Nonceliac Patients with IBS-D May Benefit from GFD

- Randomized controlled trials of IBS-D patients without celiac disease randomized to receive either GCD or GFD

 - Compared with GCD, GFD significantly improved
 - Symptom control
 - Bloating
 - Pain
 - Fatigue
 - Stool frequency and consistency

FODMAP, Fermentable Oligosaccharides, Disaccharides, Monosaccharides, and Polyols; GCD, gluten-containing diet

Dietary Considerations in IBS

Low FODMAP™ Diet: Evolution of Evidence in IBS-D

Double-blind, placebo-controlled rechallenge study*

(N=25)
Fructose and fructans specifically induced symptoms that mimicked IBS-D

Observational cohort studies

Consistent response of 75% of patients across all symptoms

Comparative studies

Low FODMAP vs standard diet associated with significantly better response across all functional GI symptoms

RCTs

(N=30)
2-day intervention of low vs high FODMAP diet; significantly >IBS symptoms with high FODMAP diet

*In response to challenge studies showing that fructose, fructans, sorbitol, mannitol, lactose, fructose, and sorbitol induce symptoms in patients with IBS versus healthy controls

Low FODMAP™ Diet in Patients with Gluten Sensitivity

Irritable Bowel Syndrome and Chronic Constipation: Digesting Recent Advances and Current Thinking

High/Low Gluten Diet: Impact on Symptom Severity

- No statistically significant changes in abdominal pain, tiredness, or nausea
- VAS, Visual Analogue Scale

Nocebo response

- Order of dietary interventions associated with degree of symptomatic response
- First intervention significantly induced greater symptomatic changes than subsequent challenges, regardless of what it contained

Evidence-Based Summary of Medical Therapies for IBS-D Symptoms

<table>
<thead>
<tr>
<th></th>
<th>Global Sx</th>
<th>Pain</th>
<th>Bloating</th>
<th>Stool Frequency</th>
<th>Stool Consistency</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alosetron</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2A/1B</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>1B</td>
</tr>
<tr>
<td>Loperamide</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>2C</td>
</tr>
<tr>
<td>Antispasmodics</td>
<td>±</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>2C</td>
</tr>
<tr>
<td>Probiotics</td>
<td>+</td>
<td></td>
<td>(Bifidobacteria; some combos)</td>
<td>+</td>
<td></td>
<td>2C</td>
</tr>
<tr>
<td>Fiber (psyllium)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Insufficient evidence</td>
</tr>
</tbody>
</table>

Rifaximin Significantly Relieves Global Symptoms & Bloating

Systematic Review and Meta-analysis of Rifaximin vs Placebo
(N=1803)

- **Global symptom improvement**: Rifaximin 42.2% vs Placebo 32.4%
- **Bloating**: Rifaximin 41.6% vs Placebo 31.7%

- *Therapeutic gain=9.8%
- †Therapeutic gain=9.9%

TARGET 1 and TARGET 2: Loss of Efficacy Over Time

- Two identical phase 3, double-blind, placebo-controlled trials
- Randomized to rifaximin 550 mg or placebo, TID x 2 wk

Success Rate of Rifaximin Retreatment

<table>
<thead>
<tr>
<th>Subjects Responding, %</th>
<th>1st RTX</th>
<th>2nd RTX</th>
<th>3rd RTX</th>
<th>4th RTX</th>
<th>5th RTX</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Treatment (RTX)</td>
<td>83.5</td>
<td>95.5</td>
<td>94.5</td>
<td>85.4</td>
<td>75</td>
</tr>
</tbody>
</table>

Panel Discussion
THE DIAGNOSTIC DILEMMA OF IBS-C AND CC

Brian Lacy, MD

Food for Thought...

- IBS-C and CC: 1 disease or 2?
IBS-C & CC

- Classically thought of as 2 separate disorders
 - Implies that pathophysiology is different
 - By extension, if pathophysiology is different, treatments should be different
- Research studies distinguish the 2
- Distinct Rome III definitions

Rome III Diagnostic Criterion for IBS*

Recurrent abdominal pain or discomfort* ≥3 d/mo in last 3 mo associated with ≥2 of the following
- Improvement with defecation
- Onset associated with change in frequency of stool
- Onset associated with change in form (appearance) of stool

≥1 of following symptoms ≥25% of occasions for subgroup identification
- Abnormal stool frequency (<3/wk)
- Abnormal stool form (lumpy/hard)
- Abnormal stool passage (straining, incomplete evacuation)
- Bloating/feeling of abdominal distension
- Passage of mucous
- Frequent, loose stools

*Criterion fulfilled for ≥3 mo with symptom onset ≥6 mo prior to diagnosis
Discomfort means an uncomfortable sensation not described as pain

Rome III Diagnostic Criteria for Functional Constipation*

- ≥2 symptoms present ≥25% of the time
- **Patients cannot meet criteria for IBS**
 - Straining
 - Hard stool or scybala
 - Sensation of incomplete evacuation
 - Sense of anorectal obstruction/blockade
 - Manual maneuvers (digital disimpaction)
 - < 3 BMs/wk

*Criteria fulfilled for ≥3 mo with symptom onset ≥6 mo prior to diagnosis
BM, bowel movement

Pathophysiology of IBS at a Glance

5-HT, serotonin; CRF, corticotropin-releasing factor; SIBO, small intestinal bacterial overgrowth
Lin HC. *JAMA.* 2004;292:852-858.
Irritable Bowel Syndrome and Chronic Constipation: Digesting Recent Advances and Current Thinking

Primary Causes of Constipation

- **Defecation disorders**: 13%–28%
- **Slow transit constipation**: 11%–13%
- **Functional constipation (IBS-C and CC)**: 59%–71%

Primary Causes of Constipation

<table>
<thead>
<tr>
<th>Cause</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defecation disorders</td>
<td>13%–28%</td>
</tr>
<tr>
<td>Slow transit constipation</td>
<td>11%–13%</td>
</tr>
<tr>
<td>Functional constipation (IBS-C</td>
<td>59%–71%</td>
</tr>
<tr>
<td>and CC)</td>
<td></td>
</tr>
</tbody>
</table>

Schiller LR. Aliment Pharmacol Ther. 2001;15(6):749-763.

IBS & CC: More Than Stool Symptoms

Symptoms in IBS Patients

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal pain</td>
<td>88%</td>
</tr>
<tr>
<td>Bloating</td>
<td>80%</td>
</tr>
<tr>
<td>Trapped gas</td>
<td>66%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>60%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>59%</td>
</tr>
<tr>
<td>Clothing...</td>
<td>58%</td>
</tr>
<tr>
<td>Constipation</td>
<td>53%</td>
</tr>
<tr>
<td>GERD</td>
<td>47%</td>
</tr>
</tbody>
</table>

Symptom Scores in CC Patients vs Healthy Controls

- **Incomplete evacuation**: Healthy controls (n=23) = 0, CC patients (n=11) = 2
- **Straining**: Healthy controls (n=23) = 0.5, CC patients (n=11) = 3
- **Abdominal pain**: Healthy controls (n=23) = 1, CC patients (n=11) = 2
- **Depression**: Healthy controls (n=23) = 0, CC patients (n=11) = 2.5
- **Anxiety**: Healthy controls (n=23) = 1, CC patients (n=11) = 5

*Community survey of >40,000 adults in 8 countries

Irritable Bowel Syndrome and Chronic Constipation: Digesting Recent Advances and Current Thinking

In Clinical Practice, IBS-C & CC Often Overlap

- Symptom-based criteria for IBS-C and CC overlap
 - Abdominal pain/discomfort and gas/bloating creates spectrum between IBS-C and CC

In Clinical Practice, Patients Move From Group to Group

IBS-M\(^{1-3}\) 19\%–49\%

IBS-C\(^{1-3}\) 19\%–44\%

IBS-D\(^{1,2}\) 15\%–36\%

Proportions of patients in each subgroup stable over time, but...\(^4\):
- 75\% will experience change in subgroup over time

IBS-M, IBS-mixed (also referred to as IBS-A [alternating])

© 2013 Paradigm Medical Communications, LLC, except where noted.
Food for Thought...

• Does making an accurate diagnosis of IBS-C and CC really matter?

Why Distinguish IBS-C from CC?

• Differentiation may help identify distinct comorbid disorders
• An accurate diagnosis may help explain the natural history
• Distinguishing IBS-C from CC may clarify treatment options
ARS Question 2

Recent clinical trials show that, compared with patients who have IBS-C, patients with chronic idiopathic constipation have:

A. Comparable incidence of abdominal pain symptoms
B. Similarly delayed colonic transit times
C. Greater visceral sensitivity
D. All of the above

Inability of Rome Criteria to Distinguish IBS-C from CC

Overlap between IBS-C and CC when Rome III requirement that CC cannot be diagnosed in a patient who meets criteria for IBS is suspended

- IBS-C patients had significantly greater frequency of abdominal pain/discomfort
 - Yet, 44.8% of CC patients reported experiencing abdominal pain/discomfort within past 3 mo

BSI, Brief Symptom Inventory of psychological distress;
PAC-QOL, Patient Assessment of Constipation Quality of Life

Patients with IBS-C & CC vs HVs

- If the Rome III requirement that patients meeting criteria for IBS cannot be diagnosed with CC was suspended, 86% (20 of 23) of IBS-C patients would meet criteria for CC
 - Similarly delayed colonic and right segmental transit vs HVs
 - Significantly increased abdominal and BM symptoms vs HVs

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Transit Times (mean; range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonic transit times ($P<.001$)</td>
<td></td>
</tr>
<tr>
<td>HV</td>
<td>38 h; 6-66 h</td>
</tr>
<tr>
<td>IBS-C</td>
<td>64 h; 24-72 h</td>
</tr>
<tr>
<td>CC</td>
<td>71 h; 13-72 h</td>
</tr>
<tr>
<td>Right colonic transit times ($P<.001$)</td>
<td></td>
</tr>
<tr>
<td>HV</td>
<td>5 h; 0-25 h</td>
</tr>
<tr>
<td>IBS-C</td>
<td>17 h; 3-35 h</td>
</tr>
<tr>
<td>CC</td>
<td>21 h; 8-51 h</td>
</tr>
</tbody>
</table>

*HV, healthy volunteer

Patients with IBS-C & CC vs HVs: Sensory Thresholds

- IBS-C patients tend to reside at sensitive end of visceral sensitivity spectrum vs CC patients
 - Hypersensitivity: 30% vs 0%, respectively
 - Hyposensitivity: 4% vs 27%, respectively

*SCompared with CC patients, $P<.05$
The Bottom Line: Treat the Predominant Symptom

- CC: constipation
- IBS-C: abdominal pain or constipation or gas/bloating
- Recognize that patients will shift groups over time
 - Should not be considered a warning sign
 - It’s the natural history and is expected
- Therefore, treatments will need to shift over time

Summary

- Use Rome III criteria as diagnostic tool
- IBS-C and CC exist on a continuum
 - They don’t exist in isolation
- Expect movement between groups
- Treat the predominant symptom
PANEL DISCUSSION

NUANCED TREATMENT OF IBS-C AND CC

Amy E. Foxx-Orenstein, DO, FACG, FACP
ARS Question 3

Which of the following psychological treatment(s) has/have been shown to improve symptoms of IBS?

A. Cognitive behavioral therapy
B. Hypnotherapy
C. Acupuncture
D. A and B
E. A, B, and C

Biofeedback in IBS-C

- Prospective study in patients with dyssynergic defecation (N=50) plus IBS-C (n=29)
 - Similar responses to biofeedback in dyssynergic and IBS-C groups (55% vs 67%, P >0.05)
 - **IBS-C symptoms disappeared in 41% patients who had pre-treatment IBS-C symptoms**
 - Symptom resolution more common in biofeedback responders vs nonresponders (P<.05)
- Conclusion: assessment of pelvic floor function (and therapy to address it) may be useful in select patients with IBS-C

Other Mind-Body Therapies That Significantly Improve IBS

- **CBT**
 - Improves GI symptoms, psychological distress, QoL\(^1\) \(^3\)

- **Mindfulness Training**
 - Reduces overall IBS severity at 3 mo\(^4\)

- **Psychological Therapy**
 - Improves IBS vs usual care (49% vs 28%); 20 studies, N=1278\(^5\)

- **Hypnotherapy**
 - Reduces symptoms of moderate-to-severe and refractory IBS\(^6\) \(^8\)

- **Exercise**
 - Improves symptom severity; less likely to have symptoms worsen\(^9\)

CC Therapies: Graded Recommendations

<table>
<thead>
<tr>
<th>Level A</th>
<th>Level B</th>
<th>Level C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bisacodyl</td>
<td>Bran</td>
<td>Milk of magnesia</td>
</tr>
<tr>
<td>Lactulose</td>
<td>Docusate sodium</td>
<td></td>
</tr>
<tr>
<td>Lubiprostone</td>
<td>Methylcellulose</td>
<td></td>
</tr>
<tr>
<td>PEG</td>
<td>Polycarbophil</td>
<td></td>
</tr>
<tr>
<td>Psyllium</td>
<td>Sorbitol</td>
<td></td>
</tr>
<tr>
<td>Senna</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Linaclotide was not included in this review.

Food for Thought...

- Are all fiber products equal in reducing symptoms of IBS-C and CC?

Overall Forest Plot of Fiber Studies

<table>
<thead>
<tr>
<th>Random</th>
<th>Treatment n/N</th>
<th>Control n/N</th>
<th>RR (random) 95% CI</th>
<th>Weight %</th>
<th>RR (random) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bran (subtotal)</td>
<td>114</td>
<td>107</td>
<td>31.75</td>
<td>1.02</td>
<td>(0.82, 1.27)</td>
</tr>
<tr>
<td>Ispaghula (subtotal)</td>
<td>161</td>
<td>160</td>
<td>65.24</td>
<td>0.78</td>
<td>(0.63, 0.96)</td>
</tr>
<tr>
<td>Fiber* (subtotal)</td>
<td>25</td>
<td>24</td>
<td>3.00</td>
<td>1.37</td>
<td>(0.62, 3.01)</td>
</tr>
<tr>
<td>Total</td>
<td>300</td>
<td>291</td>
<td>100.00</td>
<td>0.87</td>
<td>(0.76, 1.00)</td>
</tr>
</tbody>
</table>

*Unspecified
Psyllium vs Bran vs Placebo for IBS-C

Responders, %

Month 1 Month 2 Month 3

Psyllium Bran Placebo

* Adequate symptom relief for ≥2 of previous 4 wk

PEG 3350 & Electrolytes for IBS-C

- RCT of PEG 3350 + E (n=68) vs placebo (n=71)
- Primary endpoint
 - No. SBMs/d in Wk 4
- PEG 3350 + E significantly improved no. SBMs/d, stool consistency, and straining vs placebo (P<.0001)
 - PEG 3350 + E significantly improved abdominal pain from baseline (P<.005)
 - Not observed with placebo

No. SBMs (weekly mean)

PEG 3350 + E Placebo

Baseline Wk 4

1.28 1.37

4.4 3.11

P<.0001

SBM, spontaneous bowel movement
Sodium Picosulfate for CC

• Patients with CC (N=367) randomized to SPS or placebo
• Primary outcome:
 – Mean complete SBMs/wk over 4 wk

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>4 Wk</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS</td>
<td>0.9 ± 0.1</td>
<td>3.4 ± 0.2</td>
</tr>
<tr>
<td>Placebo</td>
<td>1.1 ± 0.1</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>P value</td>
<td>—</td>
<td>P<.0001</td>
</tr>
</tbody>
</table>

• Overall PAC-QoL score improved
• Conclusion: SPS effective, safe, well-tolerated in CC

PAC-QoL, Patient Assessment of Constipation Quality of Life; SPS, sodium picosulfate

ARS Question 4

Which of the following does not have a specific indication for IBS-C and chronic idiopathic constipation?

A. Lubiprostone
B. Linaclotide
C. PEG 3350
D. All of the above are indicated for both IBS-C and chronic idiopathic constipation
Food for Thought...

- What is the role of medical therapy in treating patients with IBS-C and CC?

Evidence-Based Summary of Medical Therapies for IBS-C & CC Symptoms

<table>
<thead>
<tr>
<th></th>
<th>Global Symptoms</th>
<th>Abdominal Pain</th>
<th>Bloating</th>
<th>Stool Frequency</th>
<th>Stool Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antidepressants (SSRIs, TCAs)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiber (psyllium)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Laxatives (PEG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Lubiprostone</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Linaclotide</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Chey WS et al. Gut and Liver. 2011;5:253-266. 2011 © Copyright by Gut and Liver. All rights reserved.
Brandt LG et al, for the ACG Task Force on IBS. Am J Gastroenterol. 2009;104(suppl 1):S1-S35.
Lubiprostone for IBS-C: Data from Two Phase 3 Trials

- 12-wk treatment period
- Overall responder = monthly responder ≥ 2-3 mo
- Monthly responder = at least moderate relief 2-4 wk or significant relief >2-4 wk

Long-term Efficacy of Lubiprostone: Monthly Responder Rates

Incidence of Nausea with Lubiprostone

- CC: 24 mcg BID with food
- IBS-C: 8 mcg BID with food

Linaclotide for IBS-C: Adequate Symptom Relief ≥13/26 Wk

Adequate Relief: IBS Symptoms, %

- Linaclotide 290 mcg (n=401): 49.1%
- Placebo (n=403): 25.1%

Most common AE: diarrhea (19.7% vs 2.5%)

© 2013 Paradigm Medical Communications, LLC, except where noted.
Irritable Bowel Syndrome and Chronic Constipation:
Digesting Recent Advances and Current Thinking

Linaclotide Phase 3 IBS-C Trial: Abdominal Pain

% Change, Worst Abdominal Pain Over 26 Wk

![Graph showing % change in worst abdominal pain over 26 weeks.]

ANCOVA, analysis of covariance

Symbiotic for CC

- 14-day crossover trial of each:
 - **Symbiotic**: yogurt with 10(8) UFC/g of *B animalis* and fructoligosaccharide
 - **Control**: lacteous dessert without probiotics
- Symbiotic significantly improved stool frequency, stool consistency, straining, and pain with defecation

Food for Thought...

• What IBS-C and CC treatments are on the horizon?

Emerging Therapies

• Prucalopride
 — 5-HT₄ receptor agonist

• Chenodeoxycholate
 — Primary bile acid synthesized from cholesterol

• Elobixibat
 — First-in-class ileal bile acid
Summary

- Range of prescription and nonprescription treatments of IBS-C and CC
- High degree of interpatient variability
 - Evaluation and treatment is tailored to subtype and to individual patient
- Trials of treatments singly or in combination may be necessary to identify regimens that provide maximum efficacy and minimal side effects
- Physician–patient relationship is key

Panel Discussion
Clinician/Patient Disconnect?

Irritable Bowel Syndrome and Chronic Constipation:
Digesting Recent Advances and Current Thinking

SHARED DECISION-MAKING TO IMPROVE CARE

William D. Chey, MD

Constipated??
She is moving her bowels every day...

I can’t deal with the straining and hard stools anymore...

© 2013 Paradigm Medical Communications, LLC, except where noted.
What Do Patients Want? (Expectations vs Reality)

The ideal office visit provides an accepting and supportive environment

ARS Question 5

Which of the following are important strategies for improving the care of patients with IBS-C or CC?

A. Establish a strong and positive physician-patient relationship
B. Assess severity and treat the predominant symptom
C. Perform a thorough work-up including imaging tests to confirm diagnosis
D. A and B
E. B and C

© 2013 Paradigm Medical Communications, LLC, except where noted.
Improving Communication & Care

- Empathic listening, explanations, and reassurance
- Make sure you understand the symptoms
- Get a feel for the patient’s QoL
- Emphasize the basics (diet, sleep, exercise)
- Assess severity and treat predominant symptom(s)
- Set follow-up
- Create a healthcare team: nurse, physician assistant, dietician, psychologist, psychotherapist
- Provide educational materials or give out online resource sites (ACG + AGA websites: www.iffgd.org, www.ibsgroup.org)
THANK YOU!